Author Affiliations
Abstract
1 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 College of Materials Science and Opto-electronics Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3 Beijing Huairou Instruments and Sensors Co., Ltd., Beijing 101400, China
4 Beijing Institute of Automation and Control Equipment, Key Laboratory of National Defense Science and Technology of Inertial Technology, Beijing 100074, China
Integrated optical gyroscopes (IOGs) have been an efficient tool for numerous applications in various fields, including inertial navigation, flight control, and earthquake monitoring. Here, we review the progress of integrated optical gyroscopes based on two categories of integrated interferometric optical gyroscopes (IIOGs) and integrated resonant optical gyroscopes (IROGs).
integrated optical gyroscopes interferometric optical gyroscopes integrated resonant optical gyroscopes 
Chinese Optics Letters
2024, 22(3): 031302
游道明 1,2谭满清 1,2,*郭小峰 1郭文涛 1[ ... ]陈文彬 1,3
作者单位
摘要
1 中国科学院半导体研究所集成光电子学国家重点实验室,北京 100083
2 中国科学院大学材料科学与光电技术学院,北京 100049
3 中国科学院大学电子电气与通信工程学院,北京 100049
纹波系数是超辐射发光二极管(SLD)的关键指标,增透薄膜被用于降低纹波系数。基于平面波方法的增透膜设计得到广泛应用,然而倾斜腔面SLD中增透膜的性能普遍不佳,使用时域有限差分方法进行分析,发现存在反射曲线偏离和反射率高等问题。优化了增透膜设计,优化后1°~10°腔面倾角内的反射率降低,降幅最高达82%,其中双层增透膜反射率低于0.05%。采用反应磁控溅射工艺镀膜,并验证了优化设计效果。经过增透膜优化,光谱纹波得到有效抑制,SLD管芯纹波系数和调制系数分别仅为0.019 dB和2.30×10-3,降幅超过50%,在100 mA的驱动电流下仍保持10 mW的光功率。所研制的增透膜能够有效减小腔面反射率,利用该增透膜制备了低纹波SLD。研究结果为SLD及其他半导体光电子器件的光学薄膜研制提供了参考。
薄膜 超辐射发光二极管 增透膜 倾斜腔面 优化设计 纹波系数 
中国激光
2023, 50(13): 1303101
Ling Yang 1Yizheng Huang 1,2Zhigang Song 1,2Manqing Tan 1,2[ ... ]Zhao Li 1,2,3,*
Author Affiliations
Abstract
1 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3 Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
Ion sensitive field effect transistor (ISFET) devices are highly accurate, convenient, fast and low-cost in the detection of ions and biological macromolecules, such as DNA molecules, antibodies, enzymatic substrates and cellular metabolites. For high-throughput cell metabolism detection, we successfully designed a very large-scale biomedical sensing application specific integrated circuit (ASIC) with a 640 × 640 ISFET array. The circuit design is highly integrated by compressing the size of a pixel to 7.4 × 7.4μm2 and arranging the layout of even and odd columns in an interdigital pattern to maximize the utilization of space. The chip can operate at a speed of 2.083M pixels/s and the dynamic process of the fluid flow on the surface of the array was monitored through ion imaging. The pH sensitivity is 33 ± 4 mV/pH and the drift rate is 0.06 mV/min after 5 h, indicating the stability and robustness of the chip. Moreover, the chip was applied to monitor pH changes in CaSki cells metabolism, with pH shifting from 8.04 to 7.40 on average. This platform has the potential for continuous and parallel monitoring of cell metabolism in single-cell culture arrays.Ion sensitive field effect transistor (ISFET) devices are highly accurate, convenient, fast and low-cost in the detection of ions and biological macromolecules, such as DNA molecules, antibodies, enzymatic substrates and cellular metabolites. For high-throughput cell metabolism detection, we successfully designed a very large-scale biomedical sensing application specific integrated circuit (ASIC) with a 640 × 640 ISFET array. The circuit design is highly integrated by compressing the size of a pixel to 7.4 × 7.4μm2 and arranging the layout of even and odd columns in an interdigital pattern to maximize the utilization of space. The chip can operate at a speed of 2.083M pixels/s and the dynamic process of the fluid flow on the surface of the array was monitored through ion imaging. The pH sensitivity is 33 ± 4 mV/pH and the drift rate is 0.06 mV/min after 5 h, indicating the stability and robustness of the chip. Moreover, the chip was applied to monitor pH changes in CaSki cells metabolism, with pH shifting from 8.04 to 7.40 on average. This platform has the potential for continuous and parallel monitoring of cell metabolism in single-cell culture arrays.
ASIC ISFET array pH monitoring ion imaging cell metabolism 
Journal of Semiconductors
2023, 44(2): 024101
作者单位
摘要
1 中国科学院半导体研究所集成光电子学国家重点实验室, 北京 100083
2 中国科学院大学材料科学与光电技术学院, 北京 100049
对974 nm双光纤光栅激光器的温度特性进行理论分析与实验研究,理论模拟了双光纤光栅的栅距对反射率的影响。先在室温(25 ℃)下测试器件的光谱,与未加双光纤光栅器件的光谱相比,双光纤光栅激光器的光谱中的次峰得到明显抑制,测试得到峰值波长(974.07 nm)锁定在光栅的中心波长974 nm附近。对器件的功率电流电压特性进行测试,当工作电流达到400 mA时,尾纤输出功率大于253 mW。再分别测试器件在全温范围下的波长变化率和功率变化率,得到波长变化率小于8.2×10 -3 nm/℃。最后测试器件的微分结构函数曲线并分析热阻分布,通过优化热沉的烧结工艺使器件功率变化率小于1.06%。
激光器 半导体激光器 双光纤光栅 波长稳定性 功率稳定性 
中国激光
2020, 47(7): 0701028
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
For external cavity semiconductor lasers (ECSLs), high coupling efficiency is critical to reducing the linewidth. In this paper, the coupling efficiency between the laser diode and the waveguide grating has been improved, with proposals for its improvement presented, including adding spot-size conversion (SSC) and using a silicon-on-insulator (SOI) waveguide. The results indicate an increase of coupling efficiency from 41.5% to 93.1%, which exhibits an improvement of approximately 51.6% over conventional schemes. The relationship between coupling efficiency and SOI waveguide structures is mainly concerned in this article. These findings provide a new way for the future research of the narrow linewidth of ECSL.
Journal of Semiconductors
2019, 40(10): 102302
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
We demonstrate a low-cost hybrid integrated and compact 100 GBaud four-lane coarse wavelength division multiplexing (CWDM) receiver optical sub-assembly (ROSA) based on an arrayed waveguide grating de-multiplexer in the O band. To achieve the horizontal light coupling between the planar light-wave circuit (PLC) based arrayed waveguide grating de-multiplexer and photodetector array, a 42° polished facet is applied for total reflection. A flexible printed circuit with high-frequency coplanar waveguides is used for a power supply of trans-impedance amplifier and signal transmission. The fabricated CWDM ROSA module, whose size is 18 mm×22 mm×6 mm, shows a 3 dB bandwidth of 21.2, 18.4, 19.6, and 19.3 GHz, respectively, in each lane. The overall symbol error rates are at a magnitude of 10 7 for 25 GBaud four-level pulse amplitude modulation (PAM-4) transmission with an average input optical power of 5 dBm.
Photonics Research
2019, 7(7): 07000722
Author Affiliations
Abstract
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
We report a compact 2×2 Mach–Zehnder interferometer (MZI) electro-optic switch fabricated on a silicon-on-insulator using standard complementary metal-oxide semiconductor (CMOS) processes. With a short modulation arm length of 200 μm, the crosstalk is reduced to 22 dB by the new modulation scheme of push–pull modulation with a pre-biased π/2 phase shift. The new modulation scheme can also work with a fast switching time of about 5.4 ns.
130.4815 Optical switching devices 130.3120 Integrated optics devices 200.4650 Optical interconnects 
Chinese Optics Letters
2015, 13(6): 061301
作者单位
摘要
中国科学院半导体研究所, 北京 100083
作为光纤陀螺用光源的超辐射发光二极管(SLD)随着工作时间的延续,其性能会发生退化。采用加速老化的实验方法来估算InGaAsP SLD管芯的工作寿命。分别在环境温度373 K和358 K下对5只SLD管芯进行加速老化,并通过对P-t曲线拟合来推算和估计管芯的老化速率和激活能。计算出了器件的激活能平均值约为0.82 eV,SLD管芯在室温下的工作寿命超过106 h,可以满足光纤陀螺用光源的寿命要求。对影响SLD管芯可靠性的因素以及管芯的退化机理进行了分析,为研制高可靠性的超辐射发光二极管提供了理论基础。
光学器件 超辐射发光二极管 寿命 测试 激活能 
光学学报
2008, 28(10): 1994
作者单位
摘要
State Key Lab. on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy ofSciences, Beijing, 100083, China
光学学报
2003, 23(s1): 451

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!